AWS Glueで新しくScalaがサポートされました

AWS GlueのETLスクリプトを作成する言語として、新たにScalaが追加されました。

画面を確認すると以下のようにPythonに加えてScalaも選択できるようになっています。
f:id:cloudfish:20180115231204p:plain

以下はScalaで自動生成されたETLスクリプトになります。

import com.amazonaws.services.glue.ChoiceOption
import com.amazonaws.services.glue.GlueContext
import com.amazonaws.services.glue.MappingSpec
import com.amazonaws.services.glue.ResolveSpec
import com.amazonaws.services.glue.errors.CallSite
import com.amazonaws.services.glue.util.GlueArgParser
import com.amazonaws.services.glue.util.Job
import com.amazonaws.services.glue.util.JsonOptions
import org.apache.spark.SparkContext
import scala.collection.JavaConverters._

object GlueApp {
  def main(sysArgs: Array[String]) {
    val spark: SparkContext = new SparkContext()
    val glueContext: GlueContext = new GlueContext(spark)
    // @params: [JOB_NAME]
    val args = GlueArgParser.getResolvedOptions(sysArgs, Seq("JOB_NAME").toArray)
    Job.init(args("JOB_NAME"), glueContext, args.asJava)
    // @type: DataSource
    // @args: [database = "sampledb", table_name = "vpc_flow_logs", transformation_ctx = "datasource0"]
    // @return: datasource0
    // @inputs: []
    val datasource0 = glueContext.getCatalogSource(database = "sampledb", tableName = "vpc_flow_logs", redshiftTmpDir = "", transformationContext = "datasource0").getDynamicFrame()
    // @type: ApplyMapping
    // @args: [mapping = [("version", "int", "version", "int"), ("account", "string", "account", "string"), ("interfaceid", "string", "interfaceid", "string"), ("sourceaddress", "string", "sourceaddress", "string"), ("destinationaddress", "string", "destinationaddress", "string"), ("sourceport", "int", "sourceport", "int"), ("destinationport", "int", "destinationport", "int"), ("protocol", "int", "protocol", "int"), ("packets", "int", "packets", "int"), ("bytes", "int", "bytes", "int"), ("starttime", "int", "starttime", "int"), ("endtime", "int", "endtime", "int"), ("action", "string", "action", "string"), ("logstatus", "string", "logstatus", "string")], transformation_ctx = "applymapping1"]
    // @return: applymapping1
    // @inputs: [frame = datasource0]
    val applymapping1 = datasource0.applyMapping(mappings = Seq(("version", "int", "version", "int"), ("account", "string", "account", "string"), ("interfaceid", "string", "interfaceid", "string"), ("sourceaddress", "string", "sourceaddress", "string"), ("destinationaddress", "string", "destinationaddress", "string"), ("sourceport", "int", "sourceport", "int"), ("destinationport", "int", "destinationport", "int"), ("protocol", "int", "protocol", "int"), ("packets", "int", "packets", "int"), ("bytes", "int", "bytes", "int"), ("starttime", "int", "starttime", "int"), ("endtime", "int", "endtime", "int"), ("action", "string", "action", "string"), ("logstatus", "string", "logstatus", "string")), caseSensitive = false, transformationContext = "applymapping1")
    // @type: ResolveChoice
    // @args: [choice = "make_struct", transformation_ctx = "resolvechoice2"]
    // @return: resolvechoice2
    // @inputs: [frame = applymapping1]
    val resolvechoice2 = applymapping1.resolveChoice(choiceOption = Some(ChoiceOption("make_struct")), transformationContext = "resolvechoice2")
    // @type: DropNullFields
    // @args: [transformation_ctx = "dropnullfields3"]
    // @return: dropnullfields3
    // @inputs: [frame = resolvechoice2]
    val dropnullfields3 = resolvechoice2.dropNulls(transformationContext = "dropnullfields3")
    // @type: DataSink
    // @args: [connection_type = "s3", connection_options = {"path": "s3://glue-test-out-bucket"}, format = "parquet", transformation_ctx = "datasink4"]
    // @return: datasink4
    // @inputs: [frame = dropnullfields3]
    val datasink4 = glueContext.getSinkWithFormat(connectionType = "s3", options = JsonOptions("""{"path": "s3://glue-test-out-bucket"}"""), transformationContext = "datasink4", format = "parquet").writeDynamicFrame(dropnullfields3)
    Job.commit()
  }
}

Sparkの利用者はPythonScalaのどちらの言語の利用が多いんでしょうか?
いずれにせよ言語の選択肢が増えるのはすごくいいですね。